Absorbing Subalgebras, Cyclic Terms, and the Constraint Satisfaction Problem

نویسندگان

  • Libor Barto
  • Marcin Kozik
چکیده

The Algebraic Dichotomy Conjecture states that the Constraint Satisfaction Problem over a fixed template is solvable in polynomial time if the algebra of polymorphisms associated to the template lies in a Taylor variety, and is NP-complete otherwise. This paper provides two new characterizations of finitely generated Taylor varieties. The first characterization is using absorbing subalgebras and the second one cyclic terms. These new conditions allow us to reprove the conjecture of Bang-Jensen and Hell (proved by the authors) and the characterization of locally finite Taylor varieties using weak nearunanimity terms (proved by McKenzie and Maróti) in an elementary and self-contained way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Subalgebra Intersection Property for Congruence Distributive Varieties

We prove that if a finite algebra A generates a congruence distributive variety then the subalgebras of the powers of A satisfy a certain kind of intersection property that fails for finite idempotent algebras that locally exhibit affine or unary behaviour. We demonstrate a connection between this property and the constraint satisfaction problem.

متن کامل

Modelling a Decentralized Constraint Satisfaction Solver for Collision-Free Channel Access

In this paper, the problem of assigning channel slots to a number of contending stations is modeled as a Constraint Satisfaction Problem (CSP). A learning MAC protocol that uses deterministic backoffs after successful transmissions is used as a decentralized solver for the CSP. The convergence process of the solver is modeled by an absorbing Markov chain (MC), and analytical, closed-form expres...

متن کامل

A New Method for Solving Constraint Satisfaction Problems

Many important problems in Artificial Intelligence can be defined as Constraint Satisfaction Problems (CSP). These types of problems are defined by a limited set of variables, each having a limited domain and a number of Constraints on the values of those variables (these problems are also called Consistent Labeling Problems (CLP), in which “Labeling" means assigning a value to a variable.) Sol...

متن کامل

A New Method for Solving Constraint Satisfaction Problems

Many important problems in Artificial Intelligence can be defined as Constraint Satisfaction Problems (CSP). These types of problems are defined by a limited set of variables, each having a limited domain and a number of Constraints on the values of those variables (these problems are also called Consistent Labeling Problems (CLP), in which “Labeling means assigning a value to a variable.) Solu...

متن کامل

Classifying the Complexity of Constraints Using Finite Algebras

Many natural combinatorial problems can be expressed as constraint satisfaction problems. This class of problems is known to be NP-complete in general, but certain restrictions on the form of the constraints can ensure tractability. Here we show that any set of relations used to specify the allowed forms of constraints can be associated with a finite universal algebra and we explore how the com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Logical Methods in Computer Science

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2010